3.6.13 \(\int \frac {\cot (e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx\) [513]

Optimal. Leaf size=33 \[ -\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \sin ^2(e+f x)}}{\sqrt {a}}\right )}{\sqrt {a} f} \]

[Out]

-arctanh((a+b*sin(f*x+e)^2)^(1/2)/a^(1/2))/f/a^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 33, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3273, 65, 214} \begin {gather*} -\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \sin ^2(e+f x)}}{\sqrt {a}}\right )}{\sqrt {a} f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cot[e + f*x]/Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

-(ArcTanh[Sqrt[a + b*Sin[e + f*x]^2]/Sqrt[a]]/(Sqrt[a]*f))

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3273

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = Free
Factors[Sin[e + f*x]^2, x]}, Dist[ff^((m + 1)/2)/(2*f), Subst[Int[x^((m - 1)/2)*((a + b*ff*x)^p/(1 - ff*x)^((m
 + 1)/2)), x], x, Sin[e + f*x]^2/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \frac {\cot (e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx &=\frac {\text {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,\sin ^2(e+f x)\right )}{2 f}\\ &=\frac {\text {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \sin ^2(e+f x)}\right )}{b f}\\ &=-\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \sin ^2(e+f x)}}{\sqrt {a}}\right )}{\sqrt {a} f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.03, size = 33, normalized size = 1.00 \begin {gather*} -\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \sin ^2(e+f x)}}{\sqrt {a}}\right )}{\sqrt {a} f} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cot[e + f*x]/Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

-(ArcTanh[Sqrt[a + b*Sin[e + f*x]^2]/Sqrt[a]]/(Sqrt[a]*f))

________________________________________________________________________________________

Maple [A]
time = 5.68, size = 42, normalized size = 1.27

method result size
default \(-\frac {\ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}}{\sin \left (f x +e \right )}\right )}{\sqrt {a}\, f}\) \(42\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/a^(1/2)*ln((2*a+2*a^(1/2)*(a+b*sin(f*x+e)^2)^(1/2))/sin(f*x+e))/f

________________________________________________________________________________________

Maxima [A]
time = 0.29, size = 26, normalized size = 0.79 \begin {gather*} -\frac {\operatorname {arsinh}\left (\frac {a}{\sqrt {a b} {\left | \sin \left (f x + e\right ) \right |}}\right )}{\sqrt {a} f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

-arcsinh(a/(sqrt(a*b)*abs(sin(f*x + e))))/(sqrt(a)*f)

________________________________________________________________________________________

Fricas [A]
time = 0.44, size = 100, normalized size = 3.03 \begin {gather*} \left [\frac {\log \left (\frac {2 \, {\left (b \cos \left (f x + e\right )^{2} + 2 \, \sqrt {-b \cos \left (f x + e\right )^{2} + a + b} \sqrt {a} - 2 \, a - b\right )}}{\cos \left (f x + e\right )^{2} - 1}\right )}{2 \, \sqrt {a} f}, \frac {\sqrt {-a} \arctan \left (\frac {\sqrt {-b \cos \left (f x + e\right )^{2} + a + b} \sqrt {-a}}{a}\right )}{a f}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/2*log(2*(b*cos(f*x + e)^2 + 2*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(a) - 2*a - b)/(cos(f*x + e)^2 - 1))/(sqr
t(a)*f), sqrt(-a)*arctan(sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(-a)/a)/(a*f)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\cot {\left (e + f x \right )}}{\sqrt {a + b \sin ^{2}{\left (e + f x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)/(a+b*sin(f*x+e)**2)**(1/2),x)

[Out]

Integral(cot(e + f*x)/sqrt(a + b*sin(e + f*x)**2), x)

________________________________________________________________________________________

Giac [A]
time = 0.45, size = 31, normalized size = 0.94 \begin {gather*} \frac {\arctan \left (\frac {\sqrt {b \sin \left (f x + e\right )^{2} + a}}{\sqrt {-a}}\right )}{\sqrt {-a} f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

arctan(sqrt(b*sin(f*x + e)^2 + a)/sqrt(-a))/(sqrt(-a)*f)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {\mathrm {cot}\left (e+f\,x\right )}{\sqrt {b\,{\sin \left (e+f\,x\right )}^2+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(e + f*x)/(a + b*sin(e + f*x)^2)^(1/2),x)

[Out]

int(cot(e + f*x)/(a + b*sin(e + f*x)^2)^(1/2), x)

________________________________________________________________________________________